
    i~                     r   d dl Z d dlZd dlZd dlmZ d dlZd dlmZ d dlm	Z	 ddl
mZmZ ddlmZ ddlmZmZmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZ ddlmZmZ ddl m!Z! ddl"m#Z# deejH                  jJ                  z  de&e'ef   ddfdZ(dejH                  jJ                  ddfdZ)deddfdZ*dejH                  jJ                  ddfdZ+	 	 d1dede,dee&e'ef   z  dz  dee&e'ef   z  dz  def
dZ-	 	 	 	 d2dejH                  jJ                  de!e&e'ef   z  de,de.edf   dee&e'ef   z  dz  de!e&e'ef   z  dz  dee&e'ef   z  dz  d e,defd!Z/	 	 d1dejH                  jJ                  de!e&e'ef   z  de,de.edf   dee&e'ef   z  dz  dee&e'ef   z  dz  defd"Z0	 	 d1dejH                  jJ                  dee&e'ef   z  dz  dee&e'ef   z  dz  defd#Z1 ejd                  e#      	 	 	 d3dejH                  jJ                  de!e&e'ef   z  de.edf   dee&e'ef   z  dz  de!e&e'ef   z  dz  dee&e'ef   z  dz  defd$       Z3 ejd                  e#      	 	 d1dejH                  jJ                  de!e&e'ef   z  de.edf   dee&e'ef   z  dz  dee&e'ef   z  dz  defd%       Z4	 	 	 	 	 	 	 d4d&ed'e,d(ee&e'ef   z  dz  d e,d)e,de!e&e'ef   z  dz  dee&e'ef   z  dz  d*e,d+e,defd,Z5 ejd                  e#      	 	 	 	 	 d5d&ed(ee&e'ef   z  dz  d)e,de!e&e'ef   z  dz  dee&e'ef   z  dz  d+e,defd-       Z6	 	 	 	 d6d&ed(ee&e'ef   z  dz  d)e,de!e&e'ef   z  dz  dee&e'ef   z  dz  defd.Z7	 	 	 d3d&ed(ee&e'ef   z  dz  de!e&e'ef   z  dz  dee&e'ef   z  dz  def
d/Z8	 	 d7d&ed'e,d(ee&e'ef   z  dz  defd0Z9y)8    N)Any)GraphModule)_USER_PRESERVED_ATTRIBUTES_KEY   )BackendConfigget_tensorrt_backend_config)convert)ConvertCustomConfigFuseCustomConfigPrepareCustomConfig)fuse)ObservedGraphModule)prepare)QuantizationTracerScopeScopeContextManager)get_custom_module_class_keys#get_skipped_module_name_and_classes)QConfigMapping)DEPRECATION_WARNINGmodelpreserved_attrsreturnc                     t        j                   |      | j                  t        <   | j                  t           j                         D ]  \  }}t	        | ||        y)zXStore preserved attributes to the model.meta so that it can be preserved during deepcopyN)copymetar   itemssetattr)r   r   	attr_nameattrs       [/var/www/html/engine/venv/lib/python3.12/site-packages/torch/ao/quantization/quantize_fx.pyattach_preserved_attrs_to_modelr"      sP    
 26?1KEJJ-. !::&DEKKM (	4y$'(    c                 p    t        | t              s&t        dt        t	        |             z   dz   dz         y )Nz,input model must be a GraphModule, Got type:z Please make zsure to follow the tutorials.)
isinstancer   
ValueErrorstrtype)r   s    r!   _check_is_graph_moduler)   %   sH    e[)$u+  .	.
 	
 *r#   c                 b    | j                   j                  D ]  }t        |d      ri |_         y)a  Attach meta field to all nodes of the graph if it does not exist,
    meta field is a field stores some meta information about the node, such
    as dtype and shape information for output of the node, this only exists
    if the program is captured by make_fx (used in quantize_pt2e flow), if
    the program is captured by torch.fx symbolic tracing, this field may not exist,
    so we add it here to avoid checking this all over the places
    r   N)graphnodeshasattrr   )r   nodes     r!   !_attach_meta_to_node_if_not_existr/   0   s.     !! tV$DIr#   c                    g }| j                         D ]Z  \  }}t        |t        j                  j                  j
                  j                        r|j                  |       Pt        |       \ |D ]N  }| j                  |= t        j                  j                  j
                  j                         | j                  |<   P y)z+Swap FloatFunctional with FXFloatFunctionalN)named_childrenr%   torchaonn	quantizedFloatFunctionalappend_swap_ff_with_fxff_modulesFXFloatFunctional)r   modules_to_swapnamemodules       r!   r8   r8   =   s    O,,. 'ffehhkk33CCD""4(v&	'   INN4 $xx{{44FFHtIr#   is_qatfuse_custom_configbackend_configc                 4    t        |        t        | |||      S )zInternal helper function to fuse modules in preparation for quantization

    Args:
        model: GraphModule object from symbolic tracing (torch.fx.symbolic_trace)
    )r)   r   )r   r>   r?   r@   s       r!   _fuse_fxrB   K   s     5!v1>BBr#   qconfig_mappingexample_inputs.prepare_custom_config_equalization_configis_standalone_modulec                 t   |
t               }|
t               }t        |t              r1t	        j
                  dt        d       t        j                  |      }t        |        t        ||      \  }}	|j                  }
|
D ci c]  }t        | |      r|t        | |       }}t        ||	      }t        | |j                  |             }t!        |       t#               j%                  |j                        }t'        ||||      }t)        ||||j*                  |||||	      }t-        ||       |S c c}w )aZ  Internal helper function for prepare_fx
        Args:
          `model`, `qconfig_mapping`, `prepare_custom_config`, `_equalization_config`:
          see docs for :func:`~torch.ao.quantization.prepare_fx`
          `is_standalone_module`: a boolean flag indicates whether we are
          quantizing a standalone module or not, a standalone module
          is a submodule of the parent module that is not inlined in the
    forward graph of the parent module,
          the way we quantize standalone module is described in:
          :func:`~torch.ao.quantization._prepare_standalone_module_fx`
    zPassing a prepare_custom_config_dict to prepare is deprecated and will not be supported in a future version. Please pass in a PrepareCustomConfig instead.   
stacklevel)rD   rE   rF   r@   rG   )r   r   r%   dictwarningswarnFutureWarning	from_dictr8   r   preserved_attributesr-   getattrr   r   tracer/   r   set_preserved_attributesrB   r   node_name_to_scoper"   )r   rC   r>   rD   rE   rF   r@   rG   skipped_module_namesskipped_module_classespreserved_attr_namesr    r   tracergraph_moduler?   prepareds                    r!   _prepare_fxr\   Z   s[   * $ 3 5#-/'.Q		
 !4 = =>S T u3V3400 1EE )5$ 	geT""O    46LMFufll5&9:L%l3)+DD22 L&2DnUL!!%31%1
H $Ho>O7s    D5c           	      &    t        | |||||d      S )a  [Internal use only] Prepare a standalone module, so that it can be used when quantizing the
    parent module.
    standalone_module means it a submodule that is not inlined in parent module,
    and will be quantized separately as one unit.

    How the standalone module is observed is specified by `input_quantized_idxs` and
    `output_quantized_idxs` in the prepare_custom_config for the standalone module

    Returns:

        * model(GraphModule): prepared standalone module. It has these attributes in
          model.meta:

            * `standalone_module_input_quantized_idxs(List[Int])`: a list of
              indexes for the graph input that is expected to be quantized,
              same as input_quantized_idxs configuration provided
              for the standalone module
            * `standalone_module_output_quantized_idxs(List[Int])`: a list of
              indices for the graph output that is quantized
              same as input_quantized_idxs configuration provided
              for the standalone module

    T)r@   rG   )r\   )r   rC   r>   rD   rE   r@   s         r!   _prepare_standalone_module_fxr^      s&    > %! r#   c                    |
t               }t        |t              r1t        j                  dt
        d       t        j                  |      }t        j                  j                  d       |j                  }|D ci c]  }t        | |      r|t        | |       }}t        j                  j                  |       }t        |       t!        |d||      }t#        ||       |S c c}w )a  Fuse modules like conv+bn, conv+bn+relu etc, model must be in eval mode.
    Fusion rules are defined in torch.ao.quantization.fx.fusion_pattern.py

    Args:

        * `model` (torch.nn.Module): a torch.nn.Module model
        * `fuse_custom_config` (FuseCustomConfig): custom configurations for fuse_fx.
            See :class:`~torch.ao.quantization.fx.custom_config.FuseCustomConfig` for more details
    Example::

        from torch.ao.quantization import fuse_fx

        m = Model().eval()
        m = fuse_fx(m)

    zPassing a fuse_custom_config_dict to fuse is deprecated and will not be supported in a future version. Please pass in a FuseCustomConfig instead.   rJ   z$quantization_api.quantize_fx.fuse_fxF)r   r%   rL   rM   rN   rO   rP   r2   _C_log_api_usage_oncerQ   r-   rR   fxsymbolic_tracer/   rB   r"   )r   r?   r@   rX   r    r   rZ   s          r!   fuse_fxre      s    * !-/$d+N		
 .778JK	HH  !GH-BB )5$ 	geT""O  88**51L%l3L%1C^TL#L/Bs   = C%c           	      b    t         j                  j                  d       t        | |d||||      S )a   Prepare a model for post training quantization

    Args:
      * `model` (torch.nn.Module): torch.nn.Module model

      * `qconfig_mapping` (QConfigMapping): QConfigMapping object to configure how a model is
         quantized, see :class:`~torch.ao.quantization.qconfig_mapping.QConfigMapping`
         for more details

      * `example_inputs` (Tuple[Any, ...]): Example inputs for forward function of the model,
         Tuple of positional args (keyword args can be passed as positional args as well)

      * `prepare_custom_config` (PrepareCustomConfig): customization configuration for quantization tool.
          See :class:`~torch.ao.quantization.fx.custom_config.PrepareCustomConfig` for more details

      * `_equalization_config`: config for specifying how to perform equalization on the model

      * `backend_config` (BackendConfig): config that specifies how operators are quantized
         in a backend, this includes how the operators are observed,
         supported fusion patterns, how quantize/dequantize ops are
         inserted, supported dtypes etc. See :class:`~torch.ao.quantization.backend_config.BackendConfig` for more details

    Return:
      A GraphModule with observer (configured by qconfig_mapping), ready for calibration

    Example::

        import torch
        from torch.ao.quantization import get_default_qconfig_mapping
        from torch.ao.quantization.quantize_fx import prepare_fx

        class Submodule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
            def forward(self, x):
                x = self.linear(x)
                return x

        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
                self.sub = Submodule()

            def forward(self, x):
                x = self.linear(x)
                x = self.sub(x) + x
                return x

        # initialize a floating point model
        float_model = M().eval()

        # define calibration function
        def calibrate(model, data_loader):
            model.eval()
            with torch.no_grad():
                for image, target in data_loader:
                    model(image)

        # qconfig is the configuration for how we insert observers for a particular
        # operator
        # qconfig = get_default_qconfig("fbgemm")
        # Example of customizing qconfig:
        # qconfig = torch.ao.quantization.QConfig(
        #    activation=MinMaxObserver.with_args(dtype=torch.qint8),
        #    weight=MinMaxObserver.with_args(dtype=torch.qint8))
        # `activation` and `weight` are constructors of observer module

        # qconfig_mapping is a collection of quantization configurations, user can
        # set the qconfig for each operator (torch op calls, functional calls, module calls)
        # in the model through qconfig_mapping
        # the following call will get the qconfig_mapping that works best for models
        # that target "fbgemm" backend
        qconfig_mapping = get_default_qconfig_mapping("fbgemm")

        # We can customize qconfig_mapping in different ways.
        # e.g. set the global qconfig, which means we will use the same qconfig for
        # all operators in the model, this can be overwritten by other settings
        # qconfig_mapping = QConfigMapping().set_global(qconfig)
        # e.g. quantize the linear submodule with a specific qconfig
        # qconfig_mapping = QConfigMapping().set_module_name("linear", qconfig)
        # e.g. quantize all nn.Linear modules with a specific qconfig
        # qconfig_mapping = QConfigMapping().set_object_type(torch.nn.Linear, qconfig)
        # for a more complete list, please see the docstring for :class:`torch.ao.quantization.QConfigMapping`
        # argument

        # example_inputs is a tuple of inputs, that is used to infer the type of the
        # outputs in the model
        # currently it's not used, but please make sure model(*example_inputs) runs
        example_inputs = (torch.randn(1, 3, 224, 224),)

        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        # `prepare_fx` inserts observers in the model based on qconfig_mapping and
        # backend_config. If the configuration for an operator in qconfig_mapping
        # is supported in the backend_config (meaning it's supported by the target
        # hardware), we'll insert observer modules according to the qconfig_mapping
        # otherwise the configuration in qconfig_mapping will be ignored
        #
        # Example:
        # in qconfig_mapping, user sets linear module to be quantized with quint8 for
        # activation and qint8 for weight:
        # qconfig = torch.ao.quantization.QConfig(
        #     observer=MinMaxObserver.with_args(dtype=torch.quint8),
        #     weight=MinMaxObserver.with-args(dtype=torch.qint8))
        # Note: current qconfig api does not support setting output observer, but
        # we may extend this to support these more fine grained control in the
        # future
        #
        # qconfig_mapping = QConfigMapping().set_object_type(torch.nn.Linear, qconfig)
        # in backend config, linear module also supports in this configuration:
        # weighted_int8_dtype_config = DTypeConfig(
        #   input_dtype=torch.quint8,
        #   output_dtype=torch.quint8,
        #   weight_dtype=torch.qint8,
        #   bias_type=torch.float)

        # linear_pattern_config = BackendPatternConfig(torch.nn.Linear) \
        #    .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
        #    .add_dtype_config(weighted_int8_dtype_config) \
        #    ...

        # backend_config = BackendConfig().set_backend_pattern_config(linear_pattern_config)
        # `prepare_fx` will check that the setting requested by suer in qconfig_mapping
        # is supported by the backend_config and insert observers and fake quant modules
        # in the model
        prepared_model = prepare_fx(float_model, qconfig_mapping, example_inputs)
        # Run calibration
        calibrate(prepared_model, sample_inference_data)
    z'quantization_api.quantize_fx.prepare_fxFr2   ra   rb   r\   )r   rC   rD   rE   rF   r@   s         r!   
prepare_fxrh      s:    X 
HH  !JK r#   c                 b    t         j                  j                  d       t        | |d|||      S )a  Prepare a model for quantization aware training

    Args:
      * `model` (torch.nn.Module): torch.nn.Module model
      * `qconfig_mapping` (QConfigMapping): see :func:`~torch.ao.quantization.prepare_fx`
      * `example_inputs` (Tuple[Any, ...]): see :func:`~torch.ao.quantization.prepare_fx`
      * `prepare_custom_config` (PrepareCustomConfig): see :func:`~torch.ao.quantization.prepare_fx`
      * `backend_config` (BackendConfig): see :func:`~torch.ao.quantization.prepare_fx`

    Return:
      A GraphModule with fake quant modules (configured by qconfig_mapping and backend_config), ready for
      quantization aware training

    Example::

        import torch
        from torch.ao.quantization import get_default_qat_qconfig_mapping
        from torch.ao.quantization.quantize_fx import prepare_qat_fx


        class Submodule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)

            def forward(self, x):
                x = self.linear(x)
                return x


        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
                self.sub = Submodule()

            def forward(self, x):
                x = self.linear(x)
                x = self.sub(x) + x
                return x


        # initialize a floating point model
        float_model = M().train()
        # (optional, but preferred) load the weights from pretrained model
        # float_model.load_weights(...)


        # define the training loop for quantization aware training
        def train_loop(model, train_data):
            model.train()
            for image, target in data_loader:
                ...


        # qconfig is the configuration for how we insert observers for a particular
        # operator
        # qconfig = get_default_qconfig("fbgemm")
        # Example of customizing qconfig:
        # qconfig = torch.ao.quantization.QConfig(
        #    activation=FakeQuantize.with_args(observer=MinMaxObserver.with_args(dtype=torch.qint8)),
        #    weight=FakeQuantize.with_args(observer=MinMaxObserver.with_args(dtype=torch.qint8)))
        # `activation` and `weight` are constructors of observer module

        # qconfig_mapping is a collection of quantization configurations, user can
        # set the qconfig for each operator (torch op calls, functional calls, module calls)
        # in the model through qconfig_mapping
        # the following call will get the qconfig_mapping that works best for models
        # that target "fbgemm" backend
        qconfig_mapping = get_default_qat_qconfig_mapping("fbgemm")

        # We can customize qconfig_mapping in different ways, please take a look at
        # the docstring for :func:`~torch.ao.quantization.prepare_fx` for different ways
        # to configure this

        # example_inputs is a tuple of inputs, that is used to infer the type of the
        # outputs in the model
        # currently it's not used, but please make sure model(*example_inputs) runs
        example_inputs = (torch.randn(1, 3, 224, 224),)

        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        # `prepare_qat_fx` inserts observers in the model based on qconfig_mapping and
        # backend_config, if the configuration for an operator in qconfig_mapping
        # is supported in the backend_config (meaning it's supported by the target
        # hardware), we'll insert fake_quantize modules according to the qconfig_mapping
        # otherwise the configuration in qconfig_mapping will be ignored
        # see :func:`~torch.ao.quantization.prepare_fx` for a detailed explanation of
        # how qconfig_mapping interacts with backend_config
        prepared_model = prepare_qat_fx(float_model, qconfig_mapping, example_inputs)
        # Run training
        train_loop(prepared_model, train_loop)

    z+quantization_api.quantize_fx.prepare_qat_fxT)r@   rg   )r   rC   rD   rE   r@   s        r!   prepare_qat_fxrj     s7    L 
HH  !NO% r#   rZ   is_referenceconvert_custom_config_remove_qconfigis_decomposedkeep_original_weightsc	                 d   |
t               }t        |t              r1t        j                  dt
        d       t        j                  |      }t        |        |j                  }	|	D 
ci c]  }
t        | |
      r|
t        | |
       }}
t        | ||||||||	      }t        ||       |S c c}
w )z_`is_standalone_module`: see docs in :func:`~torch.ao.quantization.prepare_standalone_module_fx`zPassing a convert_custom_config_dict to convert is deprecated and will not be supported in a future version. Please pass in a ConvertCustomConfig instead.rI   rJ   )_remove_qconfig_flagrC   r@   rn   ro   )r
   r%   rL   rM   rN   rO   rP   r)   rQ   r-   rR   r	   r"   )rZ   rk   rl   rG   rm   rC   r@   rn   ro   rX   r    r   r5   s                r!   _convert_fxrr     s     $ 3 5'.Q		
 !4 = =>S T<(0EE )<& 	glD))O  ,'%#3
I $I?'s   ) B-c           	      d    t         j                  j                  d       t        | d|||||      S )a
  Convert a calibrated or trained model to a quantized model

    Args:
        * `graph_module` (torch.fx.GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :class:`~torch.ao.quantization.fx.custom_config.ConvertCustomConfig` for more details

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.

           The keys must include the ones in the qconfig_mapping passed to `prepare_fx` or `prepare_qat_fx`,
           with the same values or `None`. Additional keys can be specified with values set to `None`.

          For each entry whose value is set to None, we skip quantizing that entry in the model::

            qconfig_mapping = QConfigMapping
                .set_global(qconfig_from_prepare)
                .set_object_type(torch.nn.functional.add, None)  # skip quantizing torch.nn.functional.add
                .set_object_type(torch.nn.functional.linear, qconfig_from_prepare)
                .set_module_name("foo.bar", None)  # skip quantizing module "foo.bar"

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend, this includes quantization
            mode support (static/dynamic/weight_only), dtype support (quint8/qint8 etc.),
            observer placement for each operators and fused operators.
            See :class:`~torch.ao.quantization.backend_config.BackendConfig` for more details

    Return:
        A quantized model (torch.nn.Module)

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # convert_fx converts a calibrated/trained model to a quantized model for the
        # target hardware, this includes converting the model first to a reference
        # quantized model, and then lower the reference quantized model to a backend
        # Currently, the supported backends are fbgemm (onednn), qnnpack (xnnpack) and
        # they share the same set of quantized operators, so we are using the same
        # lowering procedure
        #
        # backend_config defines the corresponding reference quantized module for
        # the weighted modules in the model, e.g. nn.Linear
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        quantized_model = convert_fx(prepared_model)

    z'quantization_api.quantize_fx.convert_fxF)rk   rl   rm   rC   r@   ro   r2   ra   rb   rr   )rZ   rl   rm   rC   r@   ro   s         r!   
convert_fxru   6  s:    t 
HH  !JK3''%3 r#   c                 b    t         j                  j                  d       t        | d||||      S )a}  Convert a calibrated or trained model to a reference quantized model,
    see https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md for more details,
    reference quantized model is a standard representation of a quantized model provided
    by FX Graph Mode Quantization, it can be further lowered to run on the target
    hardware, like accelerators

    Args:
        * `graph_module` (GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend. See
            :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

    Return:
        A reference quantized model (GraphModule)

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        reference_quantized_model = convert_to_reference_fx(prepared_model)

    z4quantization_api.quantize_fx.convert_to_reference_fxT)rk   rl   rm   rC   r@   rt   )rZ   rl   rm   rC   r@   s        r!   convert_to_reference_fxrw   |  s7    N 
HH  !WX3''% r#   c           	      d    t         j                  j                  d       t        | d|d||d      S )a  Convert a calibrated or trained model to a reference quantized model, with
    decomposed representation for quantized Tensor
    see https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md for more details,
    reference quantized model is a standard representation of a quantized model provided
    by FX Graph Mode Quantization, it can be further lowered to run on the target
    hardware, like accelerators

    Note: this is not public API

    Args:
        * `graph_module` (GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend. See
            :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

    Return:
        A reference quantized model (GraphModule) with operators working with decomposed quantized Tensor

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        reference_quantized_model = _convert_to_reference_decomposed_fx(prepared_model)

    z@quantization_api.quantize_fx._convert_to_reference_decomposed_fxTF)rk   rl   rm   rC   r@   rn   rt   )rZ   rl   rC   r@   s       r!   #_convert_to_reference_decomposed_fxry     s>    R 
HH  J 3'% r#   c                      t        | ||d      S )av  [Internal use only] Convert a model produced by :func:`~torch.ao.quantization.prepare_standalone_module_fx`
    and convert it to a quantized model

    Returns a quantized standalone module, whether input/output is quantized is
    specified by prepare_custom_config, with
    input_quantized_idxs, output_quantized_idxs, please
    see docs for prepare_fx for details
    T)rG   )rr   )rZ   rk   rl   s      r!   _convert_standalone_module_fxr{     s     !	 r#   )NN)NNNF)NNN)NFTNNFF)NTNNF)NTNN)FN):r   typing_extensionsrM   typingr   r2   torch.fxr   torch.fx.graph_moduler   r@   r   r   
fx.convertr	   fx.custom_configr
   r   r   fx.fuser   fx.graph_moduler   
fx.preparer   	fx.tracerr   r   r   fx.utilsr   r   rC   r   utilsr   r4   ModulerL   r'   r"   r)   r/   r8   boolrB   tupler\   r^   re   
deprecatedrh   rj   rr   ru   rw   ry   r{    r#   r!   <module>r      s          @ F  X X  0  E E , &	((	(#s(^	( 
	(
%((// 
d 

[ 
T 
Iehhoo I$ I" DH<@	CCC )4S>9D@C "DcN2T9	C
 C( JNCG<@!&E88??E#d38n4E E #s(O	E
 /c3h?$FE )4S>9D@E "DcN2T9E E EZ JN<@'88??'#d38n4' ' #s(O	'
 /c3h?$F' "DcN2T9' 'X DH<@.88??.(4S>9D@. "DcN2T9. 	.b 12
 JNCG<@T88??T#d38n4T #s(OT /c3h?$F	T
 )4S>9D@T "DcN2T9T T 3Tn 12
 JN<@m88??m#d38n4m #s(Om /c3h?$F	m
 "DcN2T9m m 3mf JN!& >B<@"'--- /c3h?$F- 	-
 - $d38n4t;- "DcN2T9- -  - -` 12 JN >B<@"'BB.c3h?$FB B $d38n4t;	B
 "DcN2T9B  B B 3BN JN >B<@//.c3h?$F/ / $d38n4t;	/
 "DcN2T9/ /h JN>B<@	44.c3h?$F4 $d38n4t;4 "DcN2T9	4
 4r IM /c3h?$F 	r#   