
    iA                          d dl mZmZ d dlZd dlmZ ddlmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZ ddgZ G d de      Zd	d
e de
 de de de dz   e_        dee   dee   dee   dee   dee   dededededededededdfdZdee   dee   dee   dee   dee   dededededededededdfdZ e	e      	 	 	 	 d!dee   dee   dee   dee   dee   dededz  dedededededededdfd        Zy)"    )AnycastN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype_maximize_doc_params_doc
_to_scalar_use_grad_for_differentiable_view_as_real	OptimizerParamsTAdadeltaadadeltac                        e Zd Z	 	 	 	 	 ddddddedeez  dededed	edz  d
edededdf fdZ fdZde	e
ef   dee   dee   dee   dee   dee   fdZedd       Z xZS )r   NF)
capturablemaximizedifferentiableparamslrrhoepsweight_decayforeachr   r   r   returnc          	      @   t        |t              r|j                         dk7  rt        d      d|k  st        d|       d|cxk  rdk  sn t        d|       d|k  st        d|       d|k  st        d|       ||||||||	d	}
t        |   ||
       y )
Nr   zTensor lr must be 1-elementg        zInvalid learning rate:       ?zInvalid rho value: zInvalid epsilon value: zInvalid weight_decay value: )r   r   r   r   r   r   r    r   )
isinstancer   numel
ValueErrorsuper__init__)selfr   r   r   r   r   r    r   r   r   defaults	__class__s              N/var/www/html/engine/venv/lib/python3.12/site-packages/torch/optim/adadelta.pyr(   zAdadelta.__init__   s     b&!bhhjAo:;;by6rd;<<c S 23%899cz6se<==l";L>JKK ( $,	
 	*    c                 0   t         |   |       | j                  D ]  }|j                  dd        |j                  dd       |j                  dd       |j                  dd       |d   D ]  }| j                  j                  |g       }t        |      dk7  s.t        j                  |d         rGt        |d         }|d   r*t        j                  |t               |j                  	      nt        j                  |t               
      |d<     y )Nr    r   Fr   r   r   r   stepdtypedevicer1   )r'   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r2   )r)   r7   grouppp_statestep_valr+   s         r,   r4   zAdadelta.__setstate__A   s    U#&& 	EY-Z/-u5\518_ 
**..B/w<1$U__WV_-M$WV_5H
 !. $,=,? #\\(:K:MN FO	
	r-   r>   params_with_gradgradssquare_avgs
acc_deltasstate_stepsc                    d}|d   D ]o  }|j                   |t        j                  |      z  }|j                  |       |j                   j                  rt        d      |j                  |j                          | j                  |   }	t        |	      dk(  r|d   r*t        j                  dt               |j                        nt        j                  dt                     |	d	<   t        j                  |t        j                  
      |	d<   t        j                  |t        j                  
      |	d<   |j                  |	d          |j                  |	d          |j                  |	d	          r |S )NFr   z*Adadelta does not support sparse gradientsr   r    r0   r3   r/   )memory_format
square_avg	acc_delta)gradr:   
is_complexappend	is_sparseRuntimeErrorr7   r9   zerosr   r2   
zeros_likepreserve_format)
r)   r>   rB   rC   rD   rE   rF   has_complexr?   r7   s
             r,   _init_groupzAdadelta._init_groupT   sS    x 	.Avv~5++A..K##A&vv"#OPPLL JJqME 5zQ \* KK*;*=ahhOR/@/BC f ',&6&6U%:%:'l# &+%5%5U%:%:&k" u\23eK01uV}-9	.< r-   c                 x   | j                          d}|$t        j                         5   |       }ddd       | j                  D ]f  }g }g }g }g }g }|d   |d   |d   |d   |d   |d   |d   |d	   f\  }	}
}}}}}}| j	                  ||||||      }t        ||||||	|
|||||||
       h |S # 1 sw Y   xY w)zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r    r   r   r   )	r   r   r   r   r    r   r   r   rT   ) _cuda_graph_capture_health_checkr:   enable_gradr5   rU   r   )r)   closurelossr>   rB   rC   rD   rE   rF   r   r   r   r   r    r   r   r   rT   s                     r,   r/   zAdadelta.step   s3    	--/""$ !y! && -	E-/"$E(*K')J(*K deen%i j!&'l#		 **'ZK  )!-%'=-	^ e! !s   B00B9)r#   g?gư>r   NN)__name__
__module____qualname__r   r<   r   boolr(   r4   dictstrr   listrU   r   r/   __classcell__)r+   s   @r,   r   r      s	    !#"+ !$"+"+ FN"+ 	"+
 "+ "+ "+ "+ "+ "+ 
"+H&)CH~) v,) F|	)
 &\) L) &\)V "= "=r-   a  Implements Adadelta algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)},
                \: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)},
                \: \lambda \text{ (weight decay)}                                                \\
            &\textbf{initialize} :  v_0  \leftarrow 0 \: \text{ (square avg)},
                \: u_0 \leftarrow 0 \: \text{ (accumulate variables)}                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm} v_t      \leftarrow v_{t-1} \rho + g^2_t (1 - \rho)                    \\
            &\hspace{5mm}\Delta x_t    \leftarrow   \frac{\sqrt{u_{t-1} +
                \epsilon }}{ \sqrt{v_t + \epsilon}  }g_t \hspace{21mm}                           \\
            &\hspace{5mm} u_t  \leftarrow   u_{t-1}  \rho +
                 \Delta x^2_t  (1 - \rho)                                                        \\
            &\hspace{5mm}\theta_t      \leftarrow   \theta_{t-1} - \gamma  \Delta x_t            \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_.
    z
    Args:
        ar  
        lr (float, Tensor, optional): coefficient that scale delta before it is applied
            to the parameters (default: 1.0)
        rho (float, optional): coefficient used for computing a running average
            of squared gradients (default: 0.9). A higher value of `rho` will
            result in a slower average, which can be helpful for preventing
            oscillations in the learning process.
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-6).
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _ADADELTA\: An Adaptive Learning Rate Method:
        https://arxiv.org/abs/1212.5701

    r   rC   rD   rE   rF   r   r   r   r   r   r   r   rT   r!   c                .   t         j                  j                         s=|r;t        d      t	        fdt        | |d      D              st        d d      t         j                  j                         st        |      }t        | ||||d      D ]{  \  }}}}}|dz  }|	s|n| }|d	k7  r|j                  ||
      }t        j                  |      r?t        j                  |      }t        j                  |      }t        j                  |      }|j                  |      j                  ||d|z
         |j                  |      j                         }|j                  |      j                         }|
r|j!                         }|j#                  |      j                  |       |j                  |      j                  ||d|z
         t        j                  |      rt        j$                  |      }|j'                  || 
       ~ y )NFsupports_xlac              3      K   | ]N  \  }}|j                   j                  |j                   j                  k(  xr |j                   j                  v  P y wr[   r2   type.0r?   r/   capturable_supported_devicess      r,   	<genexpr>z*_single_tensor_adadelta.<locals>.<genexpr>
  Q      
 4 HHMMT[[--- >!==>
   AATstrictIIf capturable=True, params and state_steps must be on supported devices: .r   r   alphavalue)r:   compileris_compilingr   allzipAssertionErrorjitis_scriptingr   addrM   view_as_realmul_addcmul_sqrt_clonediv_view_as_complexadd_)r   rC   rD   rE   rF   r   r   r   r   r   r   r   rT   paramrL   rJ   rK   r/   stddeltarl   s                       @r,   _single_tensor_adadeltar      s   " >>&&(Z'H(
$  
 v{4@
 

 ![\x[yyz{  99!!#^47{JD5 %0tZD 		#t$188E86DE"++J7J**95I%%d+D%%dDC%@nnS!'')c"((*KKME

3T"s$$UES$AE"))%0E

5
$1%r-   c                   |
rt        d      t        j                  j                         s=|r;t	        d      t        fdt        | |d      D              st        d d      t        |       d	k(  ry t        |      }t        j                  | ||||g      }|j                         D ]  \  \  }}}}}}t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }|rt        ||||       t        j                  j                         s=|d	   j                   r.t        j"                  |t        j$                  d
d      d
       nt        j"                  |d       |	rt        j&                  |      }|d	k7  r3|	rt        j"                  |||       nt        j(                  |||      }t        j*                  ||       t        j,                  |||d|z
         t        j(                  ||      }t        j.                  |       t        j(                  ||      }t        j.                  |       t        j0                  ||       t        j*                  ||       t        j*                  ||       t        j,                  |||d|z
         |rIt3        |t        j                        r/t        j*                  ||        t        j"                  ||       t        j"                  |||         y )Nz#_foreach ops don't support autogradFre   c              3      K   | ]N  \  }}|j                   j                  |j                   j                  k(  xr |j                   j                  v  P y wr[   rh   rj   s      r,   rm   z)_multi_tensor_adadelta.<locals>.<genexpr>I  rn   ro   Trp   rr   rs   r   r#   cpu)r2   rt   r   rv   )r|   r:   rx   ry   r   rz   r{   r9   r   r   "_group_tensors_by_device_and_dtypevaluesr   rb   r   r   is_cpu_foreach_add_r=   _foreach_neg_foreach_add_foreach_mul__foreach_addcmul__foreach_sqrt__foreach_div_r$   )r   rC   rD   rE   rF   r   r   r   r   r   r   r   rT   grouped_tensorsdevice_params_device_grads_device_square_avgs_device_acc_deltas_device_state_steps__device_paramsdevice_gradsdevice_square_avgsdevice_acc_deltasdevice_state_stepsr   deltasrl   s                              @r,   _multi_tensor_adadeltar   1  s     BCC >>&&(Z'H(
$  
 v{4@
 

 ![\x[yyz{  6{a	BBBB	Z=O ""$>B 		 	T&\>:DL-8!$v,0CD f/AB!$v,0CD|-?AR ~~**,1CA1F1M1M"ELLU$C3  2A6 --l;L1##L-|T$11 -|  	.4l!c'	
   !3S9S!##$5s;V$FC(FL1-s3 166SQ *R6,v6vbSA}>Br-   )single_tensor_fnr    c	                z   t         j                  j                         st        d |D              st	        d      |t        | |d      \  }}|r)t         j                  j                         rt	        d      |r%t         j                  j                         st        }nt        } || |||||	|
||||||       y)zvFunctional API that performs Adadelta algorithm computation.

    See :class:`~torch.optim.Adadelta` for details.
    c              3   P   K   | ]  }t        |t        j                           y wr[   )r$   r:   r   )rk   ts     r,   rm   zadadelta.<locals>.<genexpr>  s       5()
1ell#5s   $&zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)r   r   r   r   r   r   r   rT   )
r:   rx   ry   rz   rP   r   r}   r~   r   r   )r   rC   rD   rE   rF   r   r    r   rT   r   r   r   r   r   r   funcs                   r,   r   r     s    6 >>&&( 5-85 2 ^
 	

 1Ne

7 599))+STTuyy--/%&!%r-   )FNFF)typingr   r   r:   r   	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__rb   r<   r_   r   r   r   rH   r-   r,   <module>r      s        $ z
"ay aJ8		 
	 
 		 		 		 90 	 j9%L9%<9% f9% V	9%
 f9% 	9% 
9% 
9% 9% 9% 9% 9% 9% 
9%xgBLgB<gB fgB V	gB
 fgB 	gB 
gB 
gB gB gB gB gB gB 
gBT  1HI  =L=<= f= V	=
 f= = D[= = = 	= 
= 
=  !=" #=$ 
%= J=r-   