
    iHD              "          d dl mZ d dlZd dlmZ ddlmZmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZ ddgZ G d de      Zd	d
e de	 de de de dz   e_        dee   dee   dee   dee   dee   dedededededededededdfdZdee   dee   dee   dee   dee   dedededededededededdfdZ ee      	 	 	 	 	 d"dee   dee   dee   dee   dee   d edz  dedededededededededdf d!       Zy)#    )castN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc
_to_scalar_use_grad_for_differentiable_view_as_real	OptimizerParamsTAdamaxadamaxc                        e Zd Z	 	 	 	 	 ddddddedeez  deeef   deded	edz  d
edededdf fdZ fdZ	d Z
edd       Z xZS )r   NF)maximizedifferentiable
capturableparamslrbetasepsweight_decayforeachr   r   r   returnc          	         t        |t              r|j                         dk7  rt        d      d|k  st        d|       d|k  st        d|       d|d   cxk  rdk  sn t        d|d          d|d   cxk  rdk  sn t        d	|d          d|k  st        d
|       ||||||||	d}
t        |   ||
       y )Nr   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )r   r   r   r   r    r   r   r   )
isinstancer   numel
ValueErrorsuper__init__)selfr   r   r   r   r   r    r   r   r   defaults	__class__s              L/var/www/html/engine/venv/lib/python3.12/site-packages/torch/optim/adamax.pyr)   zAdamax.__init__   s     b&!bhhjAo:;;by6rd;<<cz6se<==eAh$$B58*MNNeAh$$B58*MNNl";L>JKK ( ,$	
 	*    c                 0   t         |   |       | j                  D ]  }|j                  dd        |j                  dd       |j                  dd       |j                  dd       |d   D ]  }| j                  j                  |g       }t        |      dk7  s.t        j                  |d         rGt        |d         }|d   r*t        j                  |t               |j                  	      nt        j                  |t               
      |d<     y )Nr    r   Fr   r   r   r   stepdtypedevicer2   )r(   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r3   )r*   r8   grouppp_statestep_valr,   s         r-   r5   zAdamax.__setstate__D   s    U#&& 	EY-Z/-u5\518_ 
**..B/w<1$U__WV_-M$WV_5H
 !. $,=,? #\\(:K:MN FO	
	r.   c                    d}|d   D ]o  }|j                   |t        j                  |      z  }|j                  |       |j                   j                  rt        d      |j                  |j                          | j                  |   }	t        |	      dk(  r|d   r*t        j                  dt               |j                        nt        j                  dt               	      |	d
<   t        j                  |t        j                        |	d<   t        j                  |t        j                        |	d<   |j                  |	d          |j                  |	d          |j                  |	d
          r |S )NFr   z(Adamax does not support sparse gradientsr   r    r1   r#   r4   r0   )memory_formatexp_avgexp_inf)gradr;   
is_complexappend	is_sparseRuntimeErrorr8   r:   zerosr   r3   r>   
zeros_likepreserve_format)
r*   r?   params_with_gradgradsexp_avgsexp_infsstate_stepshas_complexr@   r8   s
             r-   _init_groupzAdamax._init_groupW   sO    x 	.Avv~5++A..K##A&vv"#MNNLL JJqME 5zQ \* KK*;*=ahhOc1B1DE f
 $)#3#3U%:%:$i  $)#3#3U%:%:$i  OOE),-OOE),-uV}-7	.: r.   c                 z   | j                          d}|$t        j                         5   |       }ddd       | j                  D ]g  }g }g }g }g }g }|d   \  }	}
|d   }|d   }|d   }|d   }|d   }|d   }|d	   }| j	                  ||||||      }t        |||||||	|
|||||||
       i |S # 1 sw Y   xY w)zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r    r   r   r   )
r   beta1beta2r   r   r    r   r   r   rU   ) _cuda_graph_capture_health_checkr;   enable_gradr6   rV   r   )r*   closurelossr?   rP   rQ   rR   rS   rT   rX   rY   r   r   r   r    r   r   r   rU   s                      r-   r0   zAdamax.stepz   s$    	--/""$ !y! && $	E-/"$E%'H%'H(*K >LE5,CtB 0LI&GZ(H"#34N|,J**'(KK  )!-%')$	L S! !s   B11B:)gMb`?)g?g+?g:0yE>r   NN)__name__
__module____qualname__r   r=   r   tupleboolr)   r5   rV   r   r0   __classcell__)r,   s   @r-   r   r      s     "%1#$+ $ $+$+ FN$+ UE\"	$+
 $+ $+ $+ $+ $+ $+ 
$+L&!F "4 "4r.   a  Implements Adamax algorithm (a variant of Adam based on infinity norm).

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
                \: \lambda \text{ (weight decay)},                                                \\
            &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\
            &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 2e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980

    r   rQ   rR   rS   rT   r   rX   rY   r   r   r   r   r   rU   r!   c       	         F   t         j                  j                         st        |      }t	        |       D ]i  \  }}||   }|
s|n| }||   }||   }||   }t         j
                  j                         s`|r^t               }|j                  j                  |j                  j                  k(  r|j                  j                  |v st        d| d      |dz  }|	dk7  r|j                  ||	      }t        j                  |      rTt        j                  |      }t        j                  |      }t        j                  |      }t        j                  |      }|j                  |d|z
         |sEt        j                  |j!                  |      |j#                         j%                  |      |       nt        j&                  |j!                  |      j)                  d      |j#                         j%                  |      j+                  d      gd      }|j-                  t        j.                  |dd             |r2||z  dz
  }|j1                  |       ||z  }|j3                  ||       ?d|t5        |      z  z
  }||z  }|j3                  ||| 	       l y )
NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alpha)outF)keepdim)value)r;   jitis_scriptingr   	enumeratecompileris_compilingr   r3   typeAssertionErroraddrI   view_as_reallerp_maximummul_absadd_cat	unsqueeze
unsqueeze_copy_amaxdiv_addcdiv_r   )r   rQ   rR   rS   rT   r   rX   rY   r   r   r   r   r   rU   iparamrH   rF   rG   step_tcapturable_supported_devicesnorm_bufneg_bias_correctiondenombias_correctionclrs                             r-   _single_tensor_adamaxr      sV   " 99!!#^f% 995Qx#t$1+1+Q ~~**,+L+N(!!V]]%7%77LL%%)EE$_`|_}}~ 
 	!188E86DE"&&u-E%%d+D((1G((1G 	dAI&MMU#
$ yye$..q1488:??33G3R3RST3UVH MM%**Xq%@A #(-!"3$$R(11ENN7E*%:f+="==O&CNN7GC4N8s99r.   c       	   	         |rt        d      t        |       dk(  ry t        j                  j	                         s=|r;t        d      t        fdt        | |d      D              st        d d	      t        |      }t        j                  | ||||g      }|j                         D ]  \  \  }}}}}}t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }t        t        t           |      }|rt        ||||       |
rt        j                   |      }t        j                  j	                         s=|d   j"                  r.t        j$                  |t        j&                  d
d      d
       nt        j$                  |d       |	dk7  r3|
rt        j$                  |||	       nt        j(                  |||	      }t        j*                  ||d|z
         t        j,                  ||       |
s|	dk(  rt        j.                  |      }nt        j0                  |       t        j$                  ||       t        j2                  ||       |rqt        j4                  ||      }t        j6                  |d       t        j8                  ||       t        j:                  ||      }t        j<                  |||       Q|D cg c]  }d|t?        |      z  z
   }}|D cg c]  }t?        |      |z  dz   }}t        j<                  ||||        y c c}w c c}w )Nz#_foreach ops don't support autogradr   F)supports_xlac              3      K   | ]N  \  }}|j                   j                  |j                   j                  k(  xr |j                   j                  v  P y wr^   )r3   rr   ).0r@   r0   r   s      r-   	<genexpr>z'_multi_tensor_adamax.<locals>.<genexpr>N  sQ      
 4 HHMMT[[--- >!==>
s   AAT)strictrf   rg   r$   cpu)r3   rh   r   ) rs   r:   r;   rp   rq   r   allzipr   r   "_group_tensors_by_device_and_dtypevaluesr   listr   r   _foreach_negis_cpu_foreach_add_r>   _foreach_add_foreach_lerp__foreach_mul__foreach_abs_foreach_abs__foreach_maximum__foreach_pow_foreach_sub__foreach_div__foreach_mul_foreach_addcdiv_r   ) r   rQ   rR   rS   rT   r   rX   rY   r   r   r   r   r   rU   grouped_tensorsgrouped_params_grouped_grads_grouped_exp_avgs_grouped_exp_infs_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_infsgrouped_state_stepsbias_correctionsr   r0   bc	step_sizer   s                                   @r-   _multi_tensor_adamaxr   2  s<   " BCC
6{a >>&&(Z'H(
$  
 v{4@
 

 ![\x[yyz{  
BBBB	(K8O ""$I 		 	d6lO<T&\>:V.?@V.?@"4<1EF/?AQ !..}=M ~~**,1DQ1G1N1N#U\\#e%DC  3Q71##M>V % 2 2!>!
 	-}a%iH 	,e4 LA-!..}=M.M3/ 0-@ $11%9LM 0!4 0"5&&'79IJE##N4DeL ;N 26EZ---    ?OO*R.2-3OIO## 02BIOIF  Ps   M!M)single_tensor_fnr    c
                |   t         j                  j                         st        d |D              st	        d      |t        | |d      \  }}|r)t         j                  j                         rt	        d      |r%t         j                  j                         st        }nt        } || |||||
|||||||	|       y)zrFunctional API that performs adamax algorithm computation.

    See :class:`~torch.optim.Adamax` for details.
    c              3   P   K   | ]  }t        |t        j                           y wr^   )r%   r;   r   )r   ts     r-   r   zadamax.<locals>.<genexpr>  s       5()
1ell#5s   $&zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)	r   rX   rY   r   r   r   r   rU   r   )
r;   rp   rq   r   rL   r   rm   rn   r   r   )r   rQ   rR   rS   rT   r    r   r   r   rU   r   rX   rY   r   r   r   funcs                    r-   r   r     s    4 >>&&( 5-85 2 ^
 	
 1Ne

7 599))+STTuyy--/#$!%r.   )NFFFF)typingr   r;   r   	optimizerr   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__r   r=   rc   r   r   r   rD   r.   r-   <module>r      s         & X
RY Rl4		 	 
 		 		 		 5+ `M9LM9<M9 6lM9 6l	M9
 fM9 
M9 M9 M9 	M9 M9 M9 M9 M9 M9  
!M9`sLs<s 6ls 6l	s
 fs 
s s s 	s s s s s s  
!sl  1FG   <L<<< 6l< 6l	<
 f< D[< < < < < 
< <  !<" 	#<$ %<& 
'< H<r.   