
    iX                     	   d dl mZmZ d dlmZ d dlmZ d dlZd dlmZ d dl	m
Z
mZmZ g dZ ed      Z e ed	      e
d
di      Zdedeegef   fdZdededej&                  dej(                  ddf
dZ ed dj,                  dHi e      ddddej.                  ddddededz  dededej&                  dz  dej(                  dej4                  dz  dedefd       Z ed  d!j,                  dHi e      ddej.                  ddd"dededej&                  dz  dej(                  dej4                  dz  dedefd#       Z ed$ d%j,                  dHi e      dddej.                  ddd&ded'ededej&                  dz  dej(                  dej4                  dz  dedefd(       Z ed) d*j,                  dHi e      d+ddej.                  ddd,ded-ededej&                  dz  dej(                  dej4                  dz  dedefd.       Z ed/ d0j,                  dHi e      ddej.                  ddd"dededej&                  dz  dej(                  dej4                  dz  dedefd1       Z ed2 d3j,                  dHi e      ddej.                  ddd"dededej&                  dz  dej(                  dej4                  dz  dedefd4       Z  ed5 d6j,                  dHi e      ddej.                  ddd"dededej&                  dz  dej(                  dej4                  dz  dedefd7       Z! ed8 d9j,                  dHi e      ddej.                  ddd"dededej&                  dz  dej(                  dej4                  dz  dedefd:       Z" ed; d<j,                  dHi e      ddej.                  ddd"d=ededej&                  dz  dej(                  dej4                  dz  dedefd>       Z# ed? d@j,                  dHi e      dAddej.                  dddBdCededej&                  dz  dej(                  dej4                  dz  dedefdD       Z$ edE dFj,                  dHi e      ddej.                  ddd"dededej&                  dz  dej(                  dej4                  dz  dedefdG       Z%y)I    )CallableIterable)sqrt)TypeVarN)Tensor)factory_common_argsmerge_dictsparse_kwargs)bartlettblackmancosineexponentialgaussiangeneral_cosinegeneral_hamminghamminghannkaisernuttall_Ta6  
    M (int): the length of the window.
        In other words, the number of points of the returned window.
    sym (bool, optional): If `False`, returns a periodic window suitable for use in spectral analysis.
        If `True`, returns a symmetric window suitable for use in filter design. Default: `True`.
normalizationzThe window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if :attr:`M` is even and :attr:`sym` is `True`.argsreturnc                  ,     dt         dt         f fd}|S )a8  Adds docstrings to a given decorated function.

    Specially useful when then docstrings needs string interpolation, e.g., with
    str.format().
    REMARK: Do not use this function if the docstring doesn't need string
    interpolation, just write a conventional docstring.

    Args:
        args (str):
    or   c                 4    dj                        | _        | S )N )join__doc__)r   r   s    V/var/www/html/engine/venv/lib/python3.12/site-packages/torch/signal/windows/windows.py	decoratorz_add_docstr.<locals>.decorator8   s    GGDM	    )r   )r   r!   s   ` r    _add_docstrr#   ,   s    R B  r"   function_nameMdtypelayoutc                     |dk  rt        |  d|       |t        j                  urt        |  d|       |t        j                  t        j                  fvrt        |  d|       y)a  Performs common checks for all the defined windows.
    This function should be called before computing any window.

    Args:
        function_name (str): name of the window function.
        M (int): length of the window.
        dtype (:class:`torch.dtype`): the desired data type of returned tensor.
        layout (:class:`torch.layout`): the desired layout of returned tensor.
    r   z, requires non-negative window length, got M=z/ is implemented for strided tensors only, got: z) expects float32 or float64 dtypes, got: N)
ValueErrortorchstridedfloat32float64)r$   r%   r&   r'   s       r    _window_function_checksr.   ?   s     	1uoI!M
 	
 U]]"oLVHU
 	
 U]]EMM22oFugN
 	
 3r"   z
Computes a window with an exponential waveform.
Also known as Poisson window.

The exponential window is defined as follows:

.. math::
    w_n = \exp{\left(-\frac{|n - c|}{\tau}\right)}

where `c` is the ``center`` of the window.
    aF  

{normalization}

Args:
    {M}

Keyword args:
    center (float, optional): where the center of the window will be located.
        Default: `M / 2` if `sym` is `False`, else `(M - 1) / 2`.
    tau (float, optional): the decay value.
        Tau is generally associated with a percentage, that means, that the value should
        vary within the interval (0, 100]. If tau is 100, it is considered the uniform window.
        Default: 1.0.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric exponential window of size 10 and with a decay value of 1.0.
    >>> # The center will be at (M - 1) / 2, where M is 10.
    >>> torch.signal.windows.exponential(10)
    tensor([0.0111, 0.0302, 0.0821, 0.2231, 0.6065, 0.6065, 0.2231, 0.0821, 0.0302, 0.0111])

    >>> # Generates a periodic exponential window and decay factor equal to .5
    >>> torch.signal.windows.exponential(10, sym=False,tau=.5)
    tensor([4.5400e-05, 3.3546e-04, 2.4788e-03, 1.8316e-02, 1.3534e-01, 1.0000e+00, 1.3534e-01, 1.8316e-02, 2.4788e-03, 3.3546e-04])
          ?TF)centertausymr&   r'   devicerequires_gradr0   r1   r2   r3   r4   c          	         |t        j                         }t        d| ||       |dk  rt        d| d      |r|t        d      | dk(  rt        j                  d||||      S ||s| dkD  r| n| dz
  d	z  }d|z  }t        j
                  | |z  | | dz
  z   |z  | ||||
      }	t        j                  t        j                  |	             S )Nr   r   zTau must be positive, got: 	 instead.z)Center must be None for symmetric windowsr   r&   r'   r3   r4             @startendstepsr&   r'   r3   r4   )r*   get_default_dtyper.   r)   emptylinspaceexpabs)
r%   r0   r1   r2   r&   r'   r3   r4   constantks
             r    r   r   Y   s    n }'')M1eV<
ax6se9EFF
v!DEEAv{{fV=
 	
 ~1q5!a!es:3wHg WA(*#	A 99eiil]##r"   a  
Computes a window with a simple cosine waveform, following the same implementation as SciPy.
This window is also known as the sine window.

The cosine window is defined as follows:

.. math::
    w_n = \sin\left(\frac{\pi (n + 0.5)}{M}\right)

This formula differs from the typical cosine window formula by incorporating a 0.5 term in the numerator,
which shifts the sample positions. This adjustment results in a window that starts and ends with non-zero values.

a  

{normalization}

Args:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric cosine window.
    >>> torch.signal.windows.cosine(10)
    tensor([0.1564, 0.4540, 0.7071, 0.8910, 0.9877, 0.9877, 0.8910, 0.7071, 0.4540, 0.1564])

    >>> # Generates a periodic cosine window.
    >>> torch.signal.windows.cosine(10, sym=False)
    tensor([0.1423, 0.4154, 0.6549, 0.8413, 0.9595, 1.0000, 0.9595, 0.8413, 0.6549, 0.4154])
r2   r&   r'   r3   r4   c          	      D   |t        j                         }t        d| ||       | dk(  rt        j                  d||||      S d}t         j                  |s
| dkD  r| dz   n| z  }t        j
                  ||z  || dz
  z   |z  | ||||      }t        j                  |      S )Nr   r   r7   r8         ?r9   r;   )r*   r?   r.   r@   pirA   sin	r%   r2   r&   r'   r3   r4   r<   rD   rE   s	            r    r   r      s    d }'')Ha7Av{{fV=
 	
 ExxA1q51=Hha!e_(#	A 99Q<r"   z
Computes a window with a gaussian waveform.

The gaussian window is defined as follows:

.. math::
    w_n = \exp{\left(-\left(\frac{n}{2\sigma}\right)^2\right)}
    a   

{normalization}

Args:
    {M}

Keyword args:
    std (float, optional): the standard deviation of the gaussian. It controls how narrow or wide the window is.
        Default: 1.0.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
    >>> torch.signal.windows.gaussian(10)
    tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])

    >>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
    >>> torch.signal.windows.gaussian(10, sym=False,std=0.9)
    tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
)stdr2   r&   r'   r3   r4   rL   c          	      x   |t        j                         }t        d| ||       |dk  rt        d| d      | dk(  rt        j                  d||||      S |s| dkD  r| n| dz
   dz  }d|t        d	      z  z  }t        j                  ||z  || dz
  z   |z  | ||||
      }	t        j                  |	d	z         S )Nr   r   z*Standard deviation must be positive, got: r6   r7   r8   r9   r:      r;   )r*   r?   r.   r)   r@   r   rA   rB   )
r%   rL   r2   r&   r'   r3   r4   r<   rD   rE   s
             r    r   r      s    ` }'')J5&9
axEcU)TUUAv{{fV=
 	
 q1ua!a%036EC$q'M"Hha!e_(#	A 99q!tWr"   aK  
Computes the Kaiser window.

The Kaiser window is defined as follows:

.. math::
    w_n = I_0 \left( \beta \sqrt{1 - \left( {\frac{n - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta )

where ``I_0`` is the zeroth order modified Bessel function of the first kind (see :func:`torch.special.i0`), and
``N = M - 1 if sym else M``.
    a  

{normalization}

Args:
    {M}

Keyword args:
    beta (float, optional): shape parameter for the window. Must be non-negative. Default: 12.0
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
    >>> torch.signal.windows.kaiser(5)
    tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])
    >>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
    >>> torch.signal.windows.kaiser(5, sym=False,std=0.9)
    tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
g      (@)betar2   r&   r'   r3   r4   rO   c          	      h   |t        j                         }t        d| ||       |dk  rt        d| d      | dk(  rt        j                  d||||      S | dk(  rt        j
                  d||||      S t        j                  |||	      }| }d
|z  |s| n| dz
  z  }t        j                  ||| dz
  |z  z         }	t        j                  ||	| ||||      }
t        j                  t        j                  ||z  t        j                  |
d      z
              t        j                  |      z  S )Nr   r   z beta must be non-negative, got: r6   r7   r8   r9   r9   )r&   r3   r:   r;   rN   )r*   r?   r.   r)   r@   onestensorminimumrA   i0r   pow)r%   rO   r2   r&   r'   r3   r4   r<   rD   r=   rE   s              r    r   r   L  sE   b }'')Ha7ax;D6KLLAv{{fV=
 	
 	AvzzfV=
 	
 <<E&9DEETzcQq1u5H
--Q(""	C 	#	A 88EJJtd{UYYq!_<=>B  r"   z
Computes the Hamming window.

The Hamming window is defined as follows:

.. math::
    w_n = \alpha - \beta\ \cos \left( \frac{2 \pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    alpha (float, optional): The coefficient :math:`\alpha` in the equation above.
    beta (float, optional): The coefficient :math:`\beta` in the equation above.
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hamming window.
    >>> torch.signal.windows.hamming(10)
    tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])

    >>> # Generates a periodic Hamming window.
    >>> torch.signal.windows.hamming(10, sym=False)
    tensor([0.0800, 0.1679, 0.3979, 0.6821, 0.9121, 1.0000, 0.9121, 0.6821, 0.3979, 0.1679])
c                $    t        | |||||      S )NrF   r   r%   r2   r&   r'   r3   r4   s         r    r   r     s$    Z 	# r"   z
Computes the Hann window.

The Hann window is defined as follows:

.. math::
    w_n = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{M - 1} \right)\right] =
    \sin^2 \left( \frac{\pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hann window.
    >>> torch.signal.windows.hann(10)
    tensor([0.0000, 0.1170, 0.4132, 0.7500, 0.9698, 0.9698, 0.7500, 0.4132, 0.1170, 0.0000])

    >>> # Generates a periodic Hann window.
    >>> torch.signal.windows.hann(10, sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
c          	      &    t        | d|||||      S )NrH   alphar2   r&   r'   r3   r4   rX   rY   s         r    r   r     s'    X 	# r"   z
Computes the Blackman window.

The Blackman window is defined as follows:

.. math::
    w_n = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{M - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Blackman window.
    >>> torch.signal.windows.blackman(5)
    tensor([-1.4901e-08,  3.4000e-01,  1.0000e+00,  3.4000e-01, -1.4901e-08])

    >>> # Generates a periodic Blackman window.
    >>> torch.signal.windows.blackman(5, sym=False)
    tensor([-1.4901e-08,  2.0077e-01,  8.4923e-01,  8.4923e-01,  2.0077e-01])
c          	      r    |t        j                         }t        d| ||       t        | g d|||||      S )Nr   )gzG?rH   g{Gz?ar2   r&   r'   r3   r4   )r*   r?   r.   r   rY   s         r    r   r     sH    V }'')J5&9	
# r"   a4  
Computes the Bartlett window.

The Bartlett window is defined as follows:

.. math::
    w_n = 1 - \left| \frac{2n}{M - 1} - 1 \right| = \begin{cases}
        \frac{2n}{M - 1} & \text{if } 0 \leq n \leq \frac{M - 1}{2} \\
        2 - \frac{2n}{M - 1} & \text{if } \frac{M - 1}{2} < n < M \\ \end{cases}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Bartlett window.
    >>> torch.signal.windows.bartlett(10)
    tensor([0.0000, 0.2222, 0.4444, 0.6667, 0.8889, 0.8889, 0.6667, 0.4444, 0.2222, 0.0000])

    >>> # Generates a periodic Bartlett window.
    >>> torch.signal.windows.bartlett(10, sym=False)
    tensor([0.0000, 0.2000, 0.4000, 0.6000, 0.8000, 1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
c          	      \   |t        j                         }t        d| ||       | dk(  rt        j                  d||||      S | dk(  rt        j                  d||||      S d}d|s| n| dz
  z  }t        j
                  ||| dz
  |z  z   | ||||	      }dt        j                  |      z
  S )
Nr   r   r7   r8   r9   rQ   rN   r;   )r*   r?   r.   r@   rR   rA   rC   rK   s	            r    r   r   U  s    Z }'')J5&9Av{{fV=
 	
 	AvzzfV=
 	
 ESAa!e,HQUh&&#	A uyy|r"   z
Computes the general cosine window.

The general cosine window is defined as follows:

.. math::
    w_n = \sum^{M-1}_{i=0} (-1)^i a_i \cos{ \left( \frac{2 \pi i n}{M - 1}\right)}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    a (Iterable): the coefficients associated to each of the cosine functions.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric general cosine window with 3 coefficients.
    >>> torch.signal.windows.general_cosine(10, a=[0.46, 0.23, 0.31], sym=True)
    tensor([0.5400, 0.3376, 0.1288, 0.4200, 0.9136, 0.9136, 0.4200, 0.1288, 0.3376, 0.5400])

    >>> # Generates a periodic general cosine window with 2 coefficients.
    >>> torch.signal.windows.general_cosine(10, a=[0.5, 1 - 0.5], sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
r_   c          	      .   |t        j                         }t        d| ||       | dk(  rt        j                  d||||      S | dk(  rt        j                  d||||      S t        |t              st        d      |st        d      d	t         j                  z  |s| n| dz
  z  }t        j                  d| dz
  |z  | ||||
      }t        j                  t        |      D 	
cg c]  \  }	}
d|	z  |
z   c}
}	|||      }t        j                  |j                  d   |j                  |j                   |j"                        }	|j%                  d      t        j&                  |	j%                  d      |z        z  j)                  d      S c c}
}	w )Nr   r   r7   r8   r9   rQ   z!Coefficients must be a list/tuplezCoefficients cannot be emptyrN   r;   ra   )r3   r&   r4   )r&   r3   r4   )r*   r?   r.   r@   rR   
isinstancer   	TypeErrorr)   rI   rA   rS   	enumeratearangeshaper&   r3   r4   	unsqueezecossum)r%   r_   r2   r&   r'   r3   r4   rD   rE   iwa_is               r    r   r     s   Z }''),a?Av{{fV=
 	
 	AvzzfV=
 	
 a";<<788588|qQ7HUh#	A ,,#,Q<041a"Q0#	C 			!iizz''		A MM"		!++b/A*= >>CCAFF 	1s   'F
z
Computes the general Hamming window.

The general Hamming window is defined as follows:

.. math::
    w_n = \alpha - (1 - \alpha) \cos{ \left( \frac{2 \pi n}{M-1} \right)}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    alpha (float, optional): the window coefficient. Default: 0.54.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hamming window with the general Hamming window.
    >>> torch.signal.windows.general_hamming(10, sym=True)
    tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])

    >>> # Generates a periodic Hann window with the general Hamming window.
    >>> torch.signal.windows.general_hamming(10, alpha=0.5, sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
gHzG?r[   r\   c          	      0    t        | |d|z
  g|||||      S )Nr/   r^   r   )r%   r\   r2   r&   r'   r3   r4   s          r    r   r     s0    Z 	#+
# r"   z
Computes the minimum 4-term Blackman-Harris window according to Nuttall.

.. math::
    w_n = 1 - 0.36358 \cos{(z_n)} + 0.48917 \cos{(2z_n)} - 0.13659 \cos{(3z_n)} + 0.01064 \cos{(4z_n)}

where :math:`z_n = \frac{2 \pi n}{M}`.
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

References::

    - A. Nuttall, "Some windows with very good sidelobe behavior,"
      IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 1, pp. 84-91,
      Feb 1981. https://doi.org/10.1109/TASSP.1981.1163506

    - Heinzel G. et al., "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
      including a comprehensive list of window functions and some new flat-top windows",
      February 15, 2002 https://holometer.fnal.gov/GH_FFT.pdf

Examples::

    >>> # Generates a symmetric Nutall window.
    >>> torch.signal.windows.general_hamming(5, sym=True)
    tensor([3.6280e-04, 2.2698e-01, 1.0000e+00, 2.2698e-01, 3.6280e-04])

    >>> # Generates a periodic Nuttall window.
    >>> torch.signal.windows.general_hamming(5, sym=False)
    tensor([3.6280e-04, 1.1052e-01, 7.9826e-01, 7.9826e-01, 1.1052e-01])
c          	      *    t        | g d|||||      S )N)gzD?g;%N?g1|?gC ˅?r^   ro   rY   s         r    r   r   6  s'    j 	
6# r"    )&collections.abcr   r   mathr   typingr   r*   r   torch._torch_docsr   r	   r
   __all__r   window_common_argsstrr#   intr&   r'   r.   formatr+   floatboolr3   r   r   r   r   r   r   r   r   r   r   r   rq   r"   r    <module>r}      s   .     L L T] 	  7 "s xb1 &


',{{
<ALL
	
4 
 < 	=%< $=%+^   $ =="&*$
*$ DL*$ 
	*$
 
*$ ;;*$ LL*$ LL4*$ *$ *$Y+X*$Z  . F/0 1(X  $ =="& 
  
  ;;	 
 LL  LL4     S(R F  2 F34 5%R  $ =="&%
% 
% 
	%
 ;;% LL% LL4% % %M%L%P 
 . F/0 1&T  $ =="&6
6 6 
	6
 ;;6 LL6 LL46 6 6O&N6r  2 F3!2  3!#N  $ =="&
 
 ;;	
 LL LL4  I#H&  . F/!.  /!"L  $ =="&
 
 ;;	
 LL LL4  G"F(  . F/!.  /!!J  $ =="&
 
 ;;	
 LL LL4  E!D2 	 . F/!.  /!#N  $ =="&%
% 
% ;;	%
 LL% LL4% % %I#H%P  0 F1!0  1!"N  $ =="&7G 7G 
	7G
 ;;7G LL7G LL47G 7G 7GG"F7Gt  0 F1!0  1!"L  $ =="&  
	
 ;; LL LL4  G"F* ! !B FC!!B  C!!+^  $ =="&
 
 ;;	
 LL LL4  Y+Xr"   