
    iP                     X   U d dl Z d dlmZmZmZ ddlmZ d dlmZm	Z	 d dl
mZ d dl
mZ d dlmZ d d	lmZ d d
lmZ d dlmZ d dlmZ d dlZddgZ e	d      Z ed      Ze j6                  j8                  Zd Zi Zeeef   e d<   d Z!d;deeeef   geeef   f   fdZ" e"ejF                        ddde$fd       Z% e"ejL                        d<de$fd       Z' e"ejP                        d<de$fd       Z) e"ejT                        d<de$fd       Z+ e"ejX                        	 	 	 	 	 d=de$fd       Z-	 d;de.e$   de.e$   de.e$   de/de$f
d Z0 e"ejb                  ejd                  ejf                  ejh                  ejj                  g      ddde$fd!       Z6 e"ejn                        de$fd"       Z8d# Z9 e"ejt                  ejv                  ejx                  g      ddde$fd$       Z=d% Z>dd&dee?e?e$d'f   e?e$d'f   e?e$d'f   e?e$d'f   dz  f      fd(Z@dd&dee?e?e$d'f   e?e$d'f   e?e$d'f   e?e$d'f   dz  f      fd)ZA e"ej                  d*+      ddde$fd,       ZC e"ej                  d*+      de$fd-       ZEd. ZF e"ej                  ej                  ej                  g      ddde$fd/       ZJ e"ej                  d*+      de$fd0       ZL e"ej                  d*+      de$fd1       ZNi ejF                  e%ejL                  e'ejP                  e)ejT                  e+ejX                  e-ejb                  e6ejd                  e6ejf                  e6ejj                  e6ejh                  e6ejn                  e8ejt                  e=ejv                  e=ejx                  e=ej                  eJej                  eJej                  eJej                  eCej                  eEej                  eLej                  eNiZd2 ZOg d3ZPd4 ZQd5 ZRdeSfd6ZTd7 ZU G d8 d      ZV G d9 d:e      ZWy)>    N)tree_maptree_flattentree_unflatten   )ModuleTracker)AnyTypeVar)Callable)Iterator)	ParamSpec)defaultdict)TorchDispatchModeprodwrapsFlopCounterModeregister_flop_formula_T_Pc                 R    t        | t        j                        r| j                  S | S N)
isinstancetorchTensorshape)is    R/var/www/html/engine/venv/lib/python3.12/site-packages/torch/utils/flop_counter.py	get_shaper      s    !U\\"wwH    flop_registryc                 4     t               d d fd
       }|S )N)out_valc                 F    t        t        ||| f      \  }}} |d|i|S )N	out_shape)r   r   )r#   argskwargsr%   fs       r   nfzshape_wrapper.<locals>.nf   s2    "*9tVW6M"Nfi$6)6v66r    r   r(   r)   s   ` r   shape_wrapperr+      s#    
1X 7 7 Ir    returnc                 d     dt         t        t        f   dt         t        t        f   f fd}|S )Nflop_formular,   c                      st                d fd}t        j                  j                  j	                  |        S )Nc                     t        | t        j                  j                        st	        d|  dt        |              | t        v rt        d|        t        | <   y )Nzlregister_flop_formula(targets): expected each target to be OpOverloadPacket (i.e. torch.ops.mylib.foo), got z which is of type zduplicate registrations for )r   r   _opsOpOverloadPacket
ValueErrortyper!   RuntimeError)targetr.   s    r   registerz=register_flop_formula.<locals>.register_fun.<locals>.register)   si    fejj&A&AB Hh0f@A A &"%A&#JKK$0M&!r    )r,   N)r+   r   utils_pytree	tree_map_)r.   r7   get_rawtargetss   ` r   register_funz+register_flop_formula.<locals>.register_fun%   s7    (6L	1 	%%h8r    )r
   r   r   )r<   r;   r=   s   `` r   r   r   $   s0    8BF#3 R8H & r    )r%   c                X    | \  }}|\  }}||k7  rt        d| d|       ||z  dz  |z  S )zCount flops for matmul.z3matmul: inner dimensions must match (k == k2), got  and    AssertionError)	a_shapeb_shaper%   r&   r'   mkk2ns	            r   mm_floprI   :   sM    
 DAqEBBwRSTRUUZ[]Z^_``q519q=r    c                     t        ||      S )zCount flops for addmm.rI   
self_shaperC   rD   r%   r'   s        r   
addmm_floprN   F   s     7G$$r    c                     | \  }}}|\  }}}	||k7  rt        d| d|       ||k7  rt        d| d|       ||z  |	z  dz  |z  }
|
S )z"Count flops for the bmm operation.z0bmm: batch dimensions must match (b == b2), got r?   z0bmm: inner dimensions must match (k == k2), got r@   rA   )rC   rD   r%   r'   brE   rF   b2rG   rH   flops              r   bmm_floprS   K   s}    
 GAq!IBABwOPQsRWXZW[\]]BwOPQsRWXZW[\]]q519q=1DKr    c                     t        ||      S )z&Count flops for the baddbmm operation.)rS   rL   s        r   baddbmm_floprU   Z   s    
 GW%%r    c	                     t        | |      S )zCount flops for _scaled_mm.rK   )
rC   rD   scale_a_shapescale_b_shape
bias_shapescale_result_shape	out_dtypeuse_fast_accumr%   r'   s
             r   _scaled_mm_flopr]   a   s     7G$$r    x_shapew_shaper%   
transposedc                 t    | d   }|r| n|dd }|^}}}	 t        |      t        |      z  |z  |z  |z  dz  }	|	S )a  Count flops for convolution.

    Note only multiplication is
    counted. Computation for bias are ignored.
    Flops for a transposed convolution are calculated as
    flops = (x_shape[2:] * prod(w_shape) * batch_size).
    Args:
        x_shape (list(int)): The input shape before convolution.
        w_shape (list(int)): The filter shape.
        out_shape (list(int)): The output shape after convolution.
        transposed (bool): is the convolution transposed
    Returns:
        int: the number of flops
    r   r@   Nr   )
r^   r_   r%   r`   
batch_size
conv_shapec_outc_infilter_sizerR   s
             r   conv_flop_countrg   r   s]    ( J''Y;J 'E4+ 
d;//*<uDtKaODKr    c                     t        | |||      S )zCount flops for convolution.r`   )rg   )
r^   r_   _bias_stride_padding	_dilationr`   r%   r&   r'   s
             r   	conv_floprn      s     7GY:NNr    c                    d }d}	 |
d   r t        |d         }|t        | |||       z  }|
d   rZt        |d         }|r&|t         ||        ||       ||      d      z  }|S |t         ||       ||        ||      d      z  }|S )Nc                 4    | d   | d   gt        | dd        z   S )Nr   r   r@   )list)r   s    r   tzconv_backward_flop.<locals>.t   s$    a%(#d59o55r    r   r   Fri   )r   rg   )grad_out_shaper^   r_   rj   rk   rl   rm   r`   _output_padding_groupsoutput_maskr%   rr   
flop_countgrad_input_shapegrad_weight_shapes                   r   conv_backward_floprz      s    6JDL 1~$Yq\2ong?OU_Q_``
1~%il3/!N*;QwZK\I]joppJ
  /!G*a6GK\I]joppJr    c                 4   | \  }}}}|\  }}}	}
|\  }}}}||cxk(  r|k(  r4n t        d      ||cxk(  r|k(  rn t        d      ||
k(  r
|	|k(  r||
k(  st        d      d}|t        ||z  ||f||z  ||	f      z  }|t        ||z  ||	f||z  |	|f      z  }|S )z^
    Count flops for self-attention.

    NB: We can assume that value_shape == key_shape
    z8sdpa_flop_count: query/key/value shapes are incompatibler   rB   rS   )query_shape	key_shapevalue_shaperP   hs_qd_q_b2_h2s_k_d2_b3_h3_s3d_vtotal_flopss                   r   sdpa_flop_countr     s     !NAq#s"Cc3$Cc3?s?WXX #$s/c/WXX :=3RU:]`dg]gWXXK8QUC-AsC/@AAK8QUC-AsC/@AAKr    c                    t        | ||      S )Count flops for self-attention.r   )r}   r~   r   r%   r&   r'   s         r   	sdpa_flopr     s     ;	;??r    c                     ddl m} ddlm} t	        | ||f      s7| j
                  j                  dk7  r| j                         j                         S |g| j                  d      dz
  z  S )z
    If the offsets tensor is fake, then we don't know the actual lengths.
    In that case, we can just assume the worst case; each batch has max length.
    r   )
FakeTensor)FunctionalTensormetar   )
torch._subclasses.fake_tensorr   #torch._subclasses.functional_tensorr   r   devicer4   difftolistsize)offsetsmax_lenr   r   s       r   _offsets_to_lengthsr   '  s[    
 9Dg
,<=>7>>CVCVZ`C`||~$$&&9Q!+,,r    )grad_out.c              #     K   |)t        |j                        dk7  rt        d      t        |j                        dk7  rt        d      |$|j                  | j                  k7  rt        d      | j                  \  }}	}
|j                  \  }}}|j                  \  }}}|t        d      |t        d      |j                  |j                  k7  rt        d      t        ||      }t        ||      }t	        ||d	
      D ]%  \  }}d|	||
f}d|||f}d|||f}||nd}||||f ' y| j                  |j                  |j                  ||j                  ndf yw)a;  
    Given inputs to a flash_attention_(forward|backward) kernel, this will handle behavior for
    NestedTensor inputs by effectively unbinding the NestedTensor and yielding the shapes for
    each batch element.

    In the case that this isn't a NestedTensor kernel, then it just yields the original shapes.
    N   z7sdpa_flop_count: expected key.shape to be 3-dimensionalz9sdpa_flop_count: expected value.shape to be 3-dimensionalzDsdpa_flop_count: grad_out.shape must match query.shape when providedz+sdpa_flop_count: cum_seq_q must not be Nonez+sdpa_flop_count: cum_seq_k must not be NonezAsdpa_flop_count: cum_seq_q and cum_seq_k must have the same shapeTstrictr   lenr   rB   r   zip)querykeyvaluer   	cum_seq_q	cum_seq_kmax_qmax_k_h_qr   h_kd_kh_vr   seq_q_lengthsseq_k_lengths	seq_q_len	seq_k_lennew_query_shapenew_key_shapenew_value_shapenew_grad_out_shapes                          r   %_unpack_flash_attention_nested_shapesr   3  s    $  syy>Q !Z[[u{{q  !\]]HNNekk$A !ghhkk3ii3kk3 !NOO !NOO??ioo- !dee+Iu=+Iu=&)-t&T 	V"Y	 #y#6OY4M #y#6O4<4Hd!=/CUUU	V 	
++syy%++AUx~~[_
__s   E"E$c              #     K   |,t        |j                        dk7  rt        d      t        |j                        dk7  rt        d      |$|j                  | j                  k7  rt        d      | j                  \  }}}	}
|j                  \  }}}}|j                  \  }}}}|t        d      |t        d      |j                  |j                  k7  rt        d      t        ||      }t        ||      }t	        ||d	
      D ]%  \  }}d|	||
f}d|||f}d|||f}||nd}||||f ' y| j                  |j                  |j                  ||j                  ndf yw)a?  
    Given inputs to a efficient_attention_(forward|backward) kernel, this will handle behavior for
    NestedTensor inputs by effectively unbinding the NestedTensor and yielding the shapes for
    each batch element.

    In the case that this isn't a NestedTensor kernel, then it just yields the original shapes.
    N   zQ_unpack_efficient_attention_nested_shapes: expected key.shape to be 4-dimensionalzS_unpack_efficient_attention_nested_shapes: expected value.shape to be 4-dimensionalz^_unpack_efficient_attention_nested_shapes: grad_out.shape must match query.shape when providedzH_unpack_efficient_attention_nested_shapes: cu_seqlens_q must not be NonezH_unpack_efficient_attention_nested_shapes: cu_seqlens_k must not be Noneza_unpack_efficient_attention_nested_shapes: cu_seqlens_q and cu_seqlens_k must have the same shapeTr   r   r   )r   r   r   r   cu_seqlens_qcu_seqlens_kmax_seqlen_qmax_seqlen_kr   r   r   r   r   r   r   	seqlens_q	seqlens_klen_qlen_kr   r   r   r   s                          r   )_unpack_efficient_attention_nested_shapesr   g  s    $  syy>Q !tuuu{{q  !vwwHNNekk$A   "B  C  C1c31c31c3 !kll !kll!3!33  "Z [ ['lC	'lC		9TB 	VLE5 #uc2OUC0M #uc2O4<4Hd!=/CUUU	V 	
++syy%++AUx~~[_
__s   E%E'T)r;   c          	      J    t        | ||||||      }
t        d |
D              S )r   )r   r   r   r   r   r   r   c              3   @   K   | ]  \  }}}}t        |||        y wr   r   .0r}   r~   r   r   s        r   	<genexpr>z0_flash_attention_forward_flop.<locals>.<genexpr>  )      2KK 	Y<   r   sum)r   r   r   r   r   r   r   r%   r&   r'   sizess              r   _flash_attention_forward_flopr     s?    " 2E  6;  r    c           	      J    t        | ||||||      }
t        d |
D              S )r   )r   r   r   r   r   r   r   c              3   @   K   | ]  \  }}}}t        |||        y wr   r   r   s        r   r   z4_efficient_attention_forward_flop.<locals>.<genexpr>  r   r   r   r   )r   r   r   biasr   r   r   r   r&   r'   r   s              r   !_efficient_attention_forward_flopr     s?    " 6!!!!E  6;  r    c                     d}|\  }}}}|\  }	}
}}|\  }}}}| \  }}}}||	cxk(  r|cxk(  r|k(  r0n t        d      ||
cxk(  r|cxk(  r|k(  rn t        d      ||k(  st        d      ||k(  r
||k(  r||k(  st        d      d}|t        ||z  ||f||z  ||f      z  }|t        ||z  ||f||z  ||f      z  }|t        ||z  ||f||z  ||f      z  }|t        ||z  ||f||z  ||f      z  }|t        ||z  ||f||z  ||f      z  }|S )Nr   zFsdpa_backward_flop_count: batch/heads/dimension mismatch among tensorszJsdpa_backward_flop_count: grad_out/value/key/query shapes are incompatibler|   )rs   r}   r~   r   r   rP   r   r   r   r   r   r   r   r   r   r   r   _b4_h4_s4_d4s                        r   sdpa_backward_flop_countr     s   K NAq#s"Cc3$Cc3'Cc3!s!c!eff *+c)?S)?C)?eff HKczeff#:SCZsczijjK 8QUC-AsC/@AAK 8QUC-AsC/@AAK8QUC-AsC/@AAK 8QUC-AsC/@AAK8QUC-AsC/@AAKr    c                    t        | |||      S )z(Count flops for self-attention backward.r   )rs   r}   r~   r   r%   r&   r'   s          r   sdpa_backward_flopr     s    
 $NKKXXr    c
           
      L    t        |||| ||||	      }t        d |D              S )N)r   r   r   r   r   r   r   r   c              3   B   K   | ]  \  }}}}t        ||||        y wr   r   r   r}   r~   r   rs   s        r   r   z1_flash_attention_backward_flop.<locals>.<genexpr>  +      ?KK 	!iU   r   )r   r   r   r   out	logsumexpr   r   r   r   r&   r'   shapess                r   _flash_attention_backward_flopr     sB    " 3	F  CI  r    c
           
      L    t        |||| ||||	      }t        d |D              S )N)r   r   r   r   r   r   r   r   c              3   B   K   | ]  \  }}}}t        ||||        y wr   r   r   s        r   r   z5_efficient_attention_backward_flop.<locals>.<genexpr>>  r   r   r   )r   r   r   r   r   r   r   r   r   r   r&   r'   r   s                r   "_efficient_attention_backward_flopr   #  sB    " 7!!!!	F  CI  r    c                 ,    t        | t              s| fS | S r   )r   tuple)xs    r   normalize_tupler   \  s    atHr    ) KMBTc                     t        dt        t        t              dz
  t        t	        |             dz
  dz              }t        |   S )Nr   r   r@   r   )maxminr   suffixesstr)numberindexs     r   get_suffix_strr   e  s=     3s8}q(3s6{+;a+?A*EFGEE?r    c                 X    t         j                  |      }| d|z  z  d}|t         |   z   S )Ni  z.3f)r   r   )r   suffixr   r   s       r   convert_num_with_suffixr   l  s2    NN6"E%c*E8E?""r    c                     |dk(  ry| |z  dS )Nr   0%z.2% )numdenoms     r   convert_to_percent_strr  s  s    zEk#r    c                 .     t                fd       }|S )Nc                 B    t        |       \  }} | }t        ||      S r   )r   r   )r&   	flat_argsspecr   r(   s       r   r)   z)_pytreeify_preserve_structure.<locals>.nfy  s'    &t,	4mc4((r    r   r*   s   ` r   _pytreeify_preserve_structurer	  x  s     
1X) )
 Ir    c                        e Zd ZdZ	 	 	 	 ddej
                  j                  eej
                  j                     z  dz  dede	de
eef   dz  ddf
 fdZdefd	Zde
ee
eef   f   fd
ZddZd Zd Zd Z xZS )r   a  
    ``FlopCounterMode`` is a context manager that counts the number of flops within its context.

    It does this using a ``TorchDispatchMode``.

    It also supports hierarchical output by passing a module (or list of
    modules) to FlopCounterMode on construction. If you do not need hierarchical
    output, you do not need to use it with a module.

    Example usage

    .. code-block:: python

        mod = ...
        with FlopCounterMode(mod) as flop_counter:
            mod.sum().backward()

    Nmodsdepthdisplaycustom_mappingr,   c                 d   t         |           t        d       | _        || _        || _        d | _        |i }|t        j                  dd       i t        |j                         D ci c]   \  }}|t        |dd      r|n
t        |      " c}}| _	        t               | _        y c c}}w )Nc                       t        t              S r   )r   intr  r    r   <lambda>z*FlopCounterMode.__init__.<locals>.<lambda>  s    +VYJZ r    z<mods argument is not needed anymore, you can stop passing itr@   )
stacklevel_get_rawF)super__init__r   flop_countsr  r  modewarningswarnr!   itemsgetattrr+   r   mod_tracker)selfr  r  r  r  rF   v	__class__s          r   r  zFlopCounterMode.__init__  s     	6ABZ6[
-1	!NMMXefg

WeWkWkWmntqRSqwq*e4!-:JJn
 )? os   -%B,c                 N    t        | j                  d   j                               S )NGlobal)r   r  valuesr  s    r   get_total_flopszFlopCounterMode.get_total_flops  s!    4##H-44677r    c                 |    | j                   j                         D ci c]  \  }}|t        |       c}}S c c}}w )a  Return the flop counts as a dictionary of dictionaries.

        The outer
        dictionary is keyed by module name, and the inner dictionary is keyed by
        operation name.

        Returns:
            Dict[str, Dict[Any, int]]: The flop counts as a dictionary.
        )r  r  dict)r  rF   r  s      r   get_flop_countszFlopCounterMode.get_flop_counts  s3     (,'7'7'='='?@tq!47
@@@s   8c                    
 | j                   }|d}dd l}d|_        g d}g } j                         
t	        
      d
 fd}t         j                  j                               D ]?  }|dk(  r	|j                  d      d	z   }||kD  r# |||d	z
        }|j                  |       A d j                  v r s|D ]  }	d
|	d   z   |	d<     |dd      |z   }t        |      dk(  rg dg}|j                  ||d      S )Ni?B r   T)ModuleFLOPz% TotalFc           	         t        
j                  |    j                               }	|k\  z  	d|z  }g }|j                  || z   t	        |      t        |      g       
j                  |    j                         D ]<  \  }}|j                  |dz   t        |      z   t	        |      t        |      g       > |S )N z - )r   r  r#  appendr   r  r  r   )mod_namer  r   paddingr#  rF   r  global_flopsglobal_suffixis_global_subsumedr  s          r   process_modz.FlopCounterMode.get_table.<locals>.process_mod  s     d..x8??ABK+"==EkGFMM("']C&{LA 
 ((288: 1eOc!f,+A}=*1l;  Mr    r"  .r   r-  )r"  0r   )leftrightr8  )headerscolalign)r  tabulatePRESERVE_WHITESPACEr%  r   sortedr  keyscountextendr   )r  r  r;  headerr#  r4  mod	mod_depth
cur_valuesr   r1  r2  r3  s   `         @@@r   	get_tablezFlopCounterMode.get_table  s0   =JJE=E 	'+$.++-&|4"	, $**//12 	&Ch		#*I5 $S)a-8JMM*%	& t'''0B *q>a* !1-6Fv;!+,F  B\ ]]r    c                     | j                   j                          | j                  j                          t	        |       | _        | j
                  j                          | S r   )r  clearr  	__enter___FlopCounterModer  r$  s    r   rH  zFlopCounterMode.__enter__  sG     ""$$T*			r    c                    | j                   t        d       | j                   j                  | }d | _         | j                  j                          | j                  r$t        | j                  | j                               |S )Nz<Internal error: FlopCounter.__exit__ called but mode is None)r  rB   __exit__r  r  printrE  r  )r  r&   rP   s      r   rK  zFlopCounterMode.__exit__   sh    99 !_``DII%	!!#<<$..,-r    c                     || j                   v rY| j                   |   } ||i |d|i}t        | j                  j                        D ]  }| j                  |   |xx   |z  cc<    |S )Nr#   )r!   setr  parentsr  )r  func_packetr   r&   r'   flop_count_funcrw   pars           r   _count_flopszFlopCounterMode._count_flops
  sx    $,,,"00=O($F&F#FJ4++334 A  %k2j@2A 
r    )Nr@   TNr   )__name__
__module____qualname____doc__r   nnr*  rq   r  boolr'  r   r  r%  r   r(  rE  rH  rK  rS  __classcell__)r   s   @r   r   r     s    * DH 48+((//D$99D@+ + 	+
 !cNT1+
 >B+*8 8
Ac4S>&9!: 
A<^~r    c                   4    e Zd ZdZdeddfdZd Zd Zd	dZy)
rI  Tcounterr,   Nc                     || _         y r   )r\  )r  r\  s     r   r  z_FlopCounterMode.__init__  s	    r    c                     ddl }|j                  | j                  j                        }| 5   || }ddd       |j                  | j                  j                        }|| j                  _        |fS # 1 sw Y   CxY w)a  Execute a branch function and capture its FLOP counts without
        affecting self.counter.flop_counts

        Args:
            branch_fn: The branch function to execute
            operands: Arguments to pass to the branch function

        Returns:
            Tuple of (result, flop_counts) where result is the branch output
            and flop_counts is a copy of the FLOP counts after execution
        r   N)copyr\  r  )r  	branch_fnoperandsr_  checkpointed_flop_countsresultr  s          r   $_execute_with_isolated_flop_countingz5_FlopCounterMode._execute_with_isolated_flop_counting  sq     	#'99T\\-E-E#F  	*)F	*ii 8 89#; {""		* 	*s   A44A=c                 <   |t         j                  j                  j                  urt        S |t         j                  j                  j                  u rI|\  }}}}| j                  ||      \  }	}
|	t        u rt        S | j                  ||      \  }}|t        u rt        S t        |
j                               t        |j                               z  }i }|D ]  }|
|   }||   }i }t        |j                               t        |j                               z  }|D ]5  }|j                  |d      }|j                  |d      }t        ||      ||<   7 |||<    |j                         D ]-  \  }}| j                  j                  |   j                  |       / |	S y )Nr   )r   opshigher_ordercondNotImplementedrd  rN  r>  getr   r  r\  r  update)r  functypesr&   r'   predtrue_branchfalse_branchra  true_outtrue_flop_counts	false_outfalse_flop_countsall_mod_keysmerged_flop_counts	outer_keytrue_func_countsfalse_func_countsmerged_func_countsall_func_keysfunc_keytrue_val	false_val
inner_dicts                           r   _handle_higher_order_opsz)_FlopCounterMode._handle_higher_order_ops-  s   uyy--222!! 599))...8<5D+|X)-)R)RX*&H& >)%%+/+T+Th,(I( N*%% /4467#>O>T>T>V:WWL!#) C	#3I#> $5i$@!%'" #$4$9$9$; <sCTCYCYC[?\ \ - LH/33Ha@H 1 5 5h BI36x3K&x0L
 1C"9-C *<)A)A)C G%	:((3:::FG
 OO /r    c                 B   |r|ni }|t         j                  j                  j                  j                  t         j                  j                  j
                  j                  t         j                  j                  j
                  j                  t         j                  j                  j                  j                  t         j                  j                  j                  j                  t         j                  j                  j                  j                  t         j                  j                  j                  j                  t         j                  j                  j                  j                  t         j                  j                  j                  j                  t         j                  j                  j                  j                  t         j                  j                  j                  j                  t         j                  j                  j                  j                  t         j                  j                  j                   j                  t         j                  j                  j"                  j                  t         j                  j$                  j&                  j                  hv rt(        S t+        |t         j,                  j.                        r| j1                  ||||      S || j2                  j4                  vra|t         j                  j$                  j6                  j                  ur1| 5   |j8                  |i |}|t(        ur|cd d d        S 	 d d d         ||i |}| j2                  j;                  |j<                  |||      S # 1 sw Y   9xY wr   )r   rf  atensym_is_contiguousdefaultis_contiguousmemory_formatis_strides_like_formatis_non_overlapping_and_denser   sym_sizestride
sym_stridestorage_offsetsym_storage_offsetnumel	sym_numeldimprimlayoutri  r   r1   HigherOrderOperatorr  r\  r!   r   	decomposerS  _overloadpacket)r  rl  rm  r&   r'   rr   s          r   __torch_dispatch__z#_FlopCounterMode.__torch_dispatch__^  sK   !r EIINN44<<IINN0088IINN00>>IINN99AAIINN??GGIINN''//IINN++33IINN))11IINN--55IINN1199IINN55==IINN((00IINN,,44IINN&&..IINN))113 3  "!dEJJ::;00udFKK t||111d%))..BWBWB_B_6_ "DNND3F3N* * D#F#||(()=)=sD&QQ s   6NN)r  N)	rT  rU  rV  supports_higher_order_operatorsr   r  rd  r  r  r  r    r   rI  rI    s,    &*# D #(/b"Rr    rI  )Fr   )NNNFN)Xr   torch.utils._pytreer   r   r   module_trackerr   typingr   r	   collections.abcr
   r   typing_extensionsr   collectionsr   torch.utils._python_dispatchr   mathr   	functoolsr   r  __all__r   r   rf  r  r   r!   r'  __annotations__r+   r   mmr  rI   addmmrN   bmmrS   baddbmmrU   
_scaled_mmr]   rq   rY  rg   convolution_convolutioncudnn_convolution_slow_conv2d_forwardconvolution_overrideablern   convolution_backwardrz   r   '_scaled_dot_product_efficient_attention#_scaled_dot_product_flash_attention#_scaled_dot_product_cudnn_attentionr   r   r   r   r   _flash_attention_forwardr   _efficient_attention_forwardr   r   0_scaled_dot_product_efficient_attention_backward,_scaled_dot_product_flash_attention_backward,_scaled_dot_product_cudnn_attention_backwardr   _flash_attention_backwardr   _efficient_attention_backwardr   r   r   r   r   r   r  r	  r   rI  r  r    r   <module>r     s    F F )  $ $ ' # :   5
6T]t_yy~~
 !#tCH~ "XxB?O>PRZ[]_a[aRb>b5c , tww/3 	# 	  	 tzz"%# % #% txx C  ! t||$&C & %& t' % 	% (%( 	$#Y$#Y$ Cy$ 	$
 	$L (())..1155	7 8
 cg Oux O8
O t001e e 2eN& DD@@@@B C EI @WZ @C@	-" 1` eE#s(OU38_eCHouSRUXY]G]]^_1`r 4` eE#s(OU38_eCHouSRUXY]G]]^_4`n t44dC  	 D> t88$G 	 H>: MMIIIIK L ^b Yps YLY t55tD 	 E@ t994H 	 I@GGWJJ
 	HHh 	LL,	
 	OO_ 	i 	y 	I 	!!9 	y 	1 	00) 	,,i 	,,i 	99;M  	557I!" 	557I#$ 	!!#@%%'H""$B&&(J+0 $# #  
O ObmR( mRr    